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Our investigation into the GOSSIPGIRL Supra Threat Actor (STA) started with a REPLICANT 
FARM  signature name that tentatively links the cryptonym GOSSIPGIRL to Flame. From there, 1

we investigated MiniFlame and Gauss –two families related to the Flame platform– without 
finding any indication of succession to Flame’s operations. Our investigation continued onto 
Stuxnet and Duqu but the altogether disappearance of Flame never sat right with us. 
 

 
Flamer: Urgent Suicide (Symantec)  2

 
Sometime in late May 2012, researchers witnessed an attempted cleanup of the remaining 
Flame infections. Whatever command-and-control servers the attackers still had control of (as 
many had been sinkholed by researchers) began to distribute a SUICIDE module and were then 
themselves scrubbed. The SUICIDE module was a particularly clunky way of burning down 
operations as it gave researchers a full list of the components and directories that the operators 
sought to delete - possibly something they rushed to develop. By all accounts, this was 
considered the death of Flame. 
 
However, during our investigation into the GOSSIPGIRL Supra Threat Actor (STA) cluster, we 
found ourselves wrestling with Flame once again, in a way we hadn’t expected.  
 

1 https://edwardsnowden.com/docs/doc/media-35688.pdf 
2 https://www.symantec.com/connect/blogs/flamer-urgent-suicide 

 



 

Flame in Context 

In May 2012, the Iranian CERT MAHER, Kaspersky Lab, and Crysis Lab researchers 
announced the discovery of an advanced malware platform targeting Iran. Flame (a.k.a. Flamer 
or sKyWIper) surprised researchers with its sheer size and the breadth of its capabilities, as an 
all-in-one cyberespionage toolkit. While on it’s own Flame was groundbreaking, later research 
identified links that showed Flame and Stuxnet were directly connected. If modularity and 
extensibility have become an expected architectural feature in modern APT toolkits, Flame was 
one of the seminal modular platforms.  
 
The malware packs a Lua virtual machine, allowing it to execute a series of scripts to implement 
complex capability with relative ease. These modules enabled the operators to gather system 
information, beacon to nearby bluetooth devices, implement network replication, propagate to 
other machines or removable media, create backdoor accounts, and much more. The malware 
gained true recognition with the discovery that one of its submodules (named ‘GADGET’) used 
valid Microsoft digital certificates generated by abusing an MD5 collision attack in order to 
spread across an enterprise via the Windows Update mechanism. 

An Enduring Mistake 

Most Flame samples are obviously timestomped to hide their real compilation time. However, as 
Crysys Lab researchers noted, when debug symbols are left in the samples, they leak the 
underlying compilation timestamp of a statically-linked library. The Crysys researchers thought 
this was SQlite but in our assessment, it appears to be PuTTY . When a version isn’t clearly 3

identified, the following string is printed: 
 

 
PuTTY Source Code, version.c file. 

 
This allowed us to track an earliest possible date of compilation for different Flame components. 
Most of the results were as expected, in the October 2009 to August 2011 range. 
 

3 https://github.com/sztupy/adbputty/blob/master/VERSION.C 



 

 
Tracking leaked build times in reference to the deployment of the FLAME suicide module 

 
However, a subset of samples surprised us. Their leaked build times pointed to a range of 
February-March 2014, nearly two years after Flame operations were burned down and the 
platform was considered abandoned.  
 
Looking at these samples lead us to the discovery of a new iteration of the Flame platform, likely 
used in the 2014-2016 timeframe. While the malware is clearly built on the Flame source code, 
it includes new counter-measures against researcher meddling. We hope that announcing these 
findings at an early stage will encourage a collaborative environment in the threat intelligence 
space reminiscent of the early days of discovery that brought about Stuxnet, Duqu, Flame, and 
Gauss. 
 

Technical Analysis 

Much like the original Flame, Flame 2.0 continues to comprised of multiple submodules directed 
by a main orchestrator reliant on an embedded Lua VM. Our initial hunting revealed two new 
sets of samples that we consider orchestrators orchestrators (​sensrsvcs / sensrsvr​) and likely 
submodules (​wmisvcs​ / ​wmihost​). 
 
Flame 1.0 modules were stored in embedded resources decoded via an XOR-based cipher and 
then ZLIB decompressed. In the newer iteration, the authors adopted AES-256  to encrypt the 4

embedded resources. Unlike other developers who embed their decryption keys alongside the 
data, the operators are expected to pass the necessary decryption key to the orchestrator upon 
execution in the form of an argument to the various DLL exports.  As a result, the contents of 

4 This version also supports AES-128 and AES-192 



 

these resources remain unknown. We hope that additional samples, heuristic execution logs, 
and overall greater visibility into the campaign will eventually enable us to analyze the contents. 
 

Flame 2.0 Orchestrator Samples 

SHA256  File Name  Description  Detections  5

15a9b1d233c02d1fdf80071797ff9077f6a
c374958f7d0f2b6e84b8d487c9cd1 

sensrsvcs.dll  - x64 
- Contains Lua 

5.1 controller 
- Resources 

101, 102, 103, 
104, 105 

1/57 

426aa55d2afb9eb08b601d373671594f39a
1d9d9a73639c4a64f17d674ca9a82 

sensrsvcs.dll  - Contains Lua 
5.1 controller 

- Resources 
101, 102, 103, 
104, 105 

5/57 

af8ccd0294530c659580f522fcc8492d92c
2296dc068f9a42474d52b2b2f16e4 

sensrsvr.dll  - Contains Lua 
5.1 controller 

- Resources 
101, 102, 103, 
104, 105 

5/57 

69227d046ad108e5729e6bfaecc4e05a0da
30d8e7e87769d9d3bbf17b4366e64 

sensrsvr.dll  - x64 
- Contains Lua 

5.1 controller 
- Resources 

101, 102, 103, 
104, 105 

1/57 

 
Additionally, we’ve identified the following related samples. We suspect that these are 
submodules possibly dropped by the orchestrators from the encrypted resources. 
 

Flame 2.0 Suspected Submodules 

0039eb194f00b975145a35ede6b48d9c1ea
87a6b2e61ac015b3d38e7e46aecbb 

wmisvcs64.dll  - x64  
- Embedded 

Plink 
- Build 

after 13 
Feb 2014 
03:40:40 

0/57 

8cb78327bd69fda61afac9393187ad5533a
63d43ebf74c0f9800bedb814b20ad 

wmisvcs64.dll  - x64 
- Embedded 

Plink 

0/57 

5 Detections were noted at time of writing and are subject to improvement. These numbers represent 
static detections and may not accurately represent heuristic detections at sample execution. 



 

- Build 
after 13 
Feb 2014 
03:40:40 

b61c62724421d38a13c58877f31298bd663
c1c8f8c3fe7d108eb9c8fe5ad0362 

wmihost64.dll  - x64 
- Build 

after 30 
Mar 2014 
18:15:53 

0/57 

134849f697ab5f31ffb043b06e9ca1c9b98
ffebba8af8ccdedd036a6263bf3a4 

wmihost.dll  - Build 
after 30 
Mar 2014 
18:15:53 

2/57 

 

Discernible Functionality  
While being unable to decode the embedded modules kept us from determining large parts of 
the functionality, some of Flame 2.0’s capabilities are still discernible. Deobfuscated strings 
contain hints and recognizable references. Python decryptors are included in the Appendix. 
 
 
Flame 2.0 resolves the requisite Windows API calls dynamically during execution. The names of 
these functions are decoded, resolved using LoadLibrary() and GetProcAddress(), and loaded 
into a struct. An example of one of the core structures used during the initialization of a 
submodule  is shown below: 6

 

struct​ ​CallStruct_0x1002911F 
{ 
  ​int​ UNK; 
  ​int​ ​GetProcAddress; 
  ​int​ ​*​GetModuleHandleA; 
  ​int​ ​*​GetLastError; 
  ​int​ ​*​memcpy; 
  ​int​ ​*​OpenFileMappingW; 
  ​int​ ​*​CreateFileMappingW; 
  ​int​ ​*​UnmapViewOfFile; 
  ​int​ ​*​MapViewOfFile; 
  ​int​ ​*​LoadLibraryW; 
  ​int​ ​*​LoadLibrary; 
  ​int​ ​*​FreeLibrary; 
  ​int​ ​*​NtQueryInformationProcess; 
  ​int​ ​*​CloseHandle; 
  ​int​ ​*​CreateMutexW; 
  ​int​ ​*​OpenMutexW; 
  ​int​ ​*​ReleaseMutex; 
  ​int​ ​*​VirtualProtect; 
  ​int​ ​*​VirtualFree; 
  ​int​ ​*​VirtualAlloc; 

6 SHA256: 0039eb194f00b975145a35ede6b48d9c1ea87a6b2e61ac015b3d38e7e46aecbb 



 

  ​int​ ​*​WaitForSingleObject; 
  ​int​ ​*​CreateFileW; 
  ​int​ ​*​memset; 
  ​int​ ​*​Sleep; 
  ​int​ ​*​LocalFree; 
}; 

 
The resulting API calls may point in the direction of Flame 2.0’s capabilities, just as they may 
simply support underlying execution requirements. For example, API calls loaded in order to 
enumerate processes are used by Flame2.0 to check for the existence of certain antivirus 
products. However, future analysis will likely find process enumeration also used for generating 
a system profile. Some of the more illustrative uses of Windows API calls are shown below 
alongside their more overt functionality: 
 
 

 

Interacting with infected host’s audio input 

 
 

 

Process enumeration 



 

 
 
​​ 

 
Additionally, based on Putty -related debugging strings and embedded artifacts, it’s likely that 7

Flame 2.0 is designed to support lateral movement. The following decoded strings match the 
syntax used by PLINK for remote port forwarding: 
 

-pw %s ​-R %d:127.0.0.1:%d​ -N ​%s@%s​ ​-P %d 
 
-pw %s                 - Password 
-R %d:127.0.0.1:%d     - <ListenPort>:<LocalHost>:<LocalPort> 
-N                     - Suppress starting a shell 
%s@%s                  - User@Host 
-P %d                  - Port 

 
 

A Call For Collaboration 
We hope that releasing these indicators at an early stage in our research process will 
encourage collaboration from the Threat Intelligence community. At this time, Flame 2.0 remains 
largely a mystery but one that’s likely to reward collective research.   

7 https://www.putty.org/ 



 

Appendix 

String Decryption 

def​ ​DecodeMethod1​(​indata​,​ r_start​,​ r_length​): 
dec_data ​=​ ​"" 
enc_data ​=​ indata​[​r_start​:] 
dec_len ​=​ ord​(​indata​[​r_length​]) 

 
for​ index​,​ ​byte​ ​in​ enumerate​(​enc_data​[:​dec_len​]): 

eax ​=​ ( 
(((​dec_len ​-​ index​)​ ​-​1​)​ ​^​ ​0x1D​)​ ​*​ ​((​dec_len ​-​ index​)​ ​+​ ​0x10​) 
)​ ​&​ ​0xFFFFFFFF 

eax ​+=​ ​0x1000193 
cl ​=​ ​(​ ​((​eax ​>>​ ​0x18​)​ ​&​ ​0xFF​)​ ​^​ ​((​eax ​>>​ ​0x10​)​ ​&​ ​0xFF​)​ ) 
cl ​=​ ​(​ cl ​^​ ​((​eax ​>>​ ​0x8​)​ ​&​ ​0xFF​)​ ) 
cl ​=​ ​(​ cl ​^​ ord​(​byte​))​ ​&​ ​0xFF  
cl ​=​ ​(​ cl ​^​ ​(​eax ​&​ ​0xFF​)​ ) 
dec_data ​+=​ chr​(​cl) 

 
return​ dec_data 

 

def​ ​DecodeMethod2​(​indata​,​ key​,​ r_start​,​ r_length​): 
enc_data ​=​ indata​[​r_start​:] 
dec_length ​=​ ord​(​indata​[​r_length​]) 
dec_data ​=​ ​"" 
for​ index​,​ ​byte​ ​in​ enumerate​(​enc_data​[:​dec_length​]): 

if​ ord​(​enc_data​[​index​])​ ​==​ ​0​ ​and​ ord​(​enc_data​[​index​+​1​])​ ​==​ ​0​:​ ​break 
dec_data ​+=​ chr​(​ ord​(​byte​)​ ​^​ ord​(​key​[​index ​%​ len​(​key​)])​ ) 

 
return​ dec_data 

 

System Artifacts 

Path Suspected Use 

%TEMP%\tmpinstall.tmp  Log FIle 

Global\ComConnectEvent  Global Event Name 

\\.\pipe\ComConnect  Named Pipe 

Global\WMI_CONNECTION_RECV  Global Event Name 

HKLM\Software\Microsoft\DirectXHelp\  Unknown 

HKLM\Software\Microsoft\HelpDirectXRep\  Unknown 

 



 

Yara Rules 

import​ ​"pe" 
import​ ​"hash" 
rule FLAME2_Orchestrator 
{ 

meta: 
desc ​=​ ​"Encrypted resources in Flame2.0 Orchestrators" 
author ​=​ ​"turla @ Uppercase" 
hash1 ​= 
"15a9b1d233c02d1fdf80071797ff9077f6ac374958f7d0f2b6e84b8d487c9cd1" 
hash2 ​= 
"426aa55d2afb9eb08b601d373671594f39a1d9d9a73639c4a64f17d674ca9a82" 
hash3 ​= 
"af8ccd0294530c659580f522fcc8492d92c2296dc068f9a42474d52b2b2f16e4" 

condition: 
for​ any i ​in​ ​(​0.​.​pe​.​number_of_resources ​-​ ​1​): 

(​(​hash​.​md5​(​pe​.​resources​[​i​].​offset​,​ pe​.​resources​[​i​].​length​)​ ​== 
"53b19d9863d8ff8cde8e4358d1b57c04"​)​ ​or 
(​hash​.​md5​(​pe​.​resources​[​i​].​offset​,​ pe​.​resources​[​i​].​length​)​ ​== 
"4849cc439e524ef6a9964a3666dddb13"​)​ ​or 
(​hash​.​md5​(​pe​.​resources​[​i​].​offset​,​ pe​.​resources​[​i​].​length​)​ ​== 
"62bfe21a8eb76fd07e22326c0073fef5"​)​ ​or 
(​hash​.​md5​(​pe​.​resources​[​i​].​offset​,​ pe​.​resources​[​i​].​length​)​ ​== 
"dfed2c71749b04dad46d0ce52834492c"​)​ ​or 
(​hash​.​md5​(​pe​.​resources​[​i​].​offset​,​ pe​.​resources​[​i​].​length​)​ ​== 
"9119aa701b39242a98be118d9c237ecc"​)​ ​or 
(​hash​.​md5​(​pe​.​resources​[​i​].​offset​,​ pe​.​resources​[​i​].​length​)​ ​== 
"b69d168e29fba6c88ad4e670949815aa"​)​ ​or 
(​hash​.​md5​(​pe​.​resources​[​i​].​offset​,​ pe​.​resources​[​i​].​length​)​ ​== 
"4849cc439e524ef6a9964a3666dddb13"​)​ ​or 
(​hash​.​md5​(​pe​.​resources​[​i​].​offset​,​ pe​.​resources​[​i​].​length​)​ ​== 
"1933a1e254b1657a6a2eb8ad1fbe6fa3"​)​ ​or 
(​hash​.​md5​(​pe​.​resources​[​i​].​offset​,​ pe​.​resources​[​i​].​length​)​ ​== 
"dfed2c71749b04dad46d0ce52834492c"​)​ ​or 
(​hash​.​md5​(​pe​.​resources​[​i​].​offset​,​ pe​.​resources​[​i​].​length​)​ ​== 
"9119aa701b39242a98be118d9c237ecc"​)​ ​or 
(​hash​.​md5​(​pe​.​resources​[​i​].​offset​,​ pe​.​resources​[​i​].​length​)​ ​== 
"b69d168e29fba6c88ad4e670949815aa"​)​ ​or 
(​hash​.​md5​(​pe​.​resources​[​i​].​offset​,​ pe​.​resources​[​i​].​length​)​ ​== 
"17c794f7056349cb82889b5e5b030d15"​)​ ​or 
(​hash​.​md5​(​pe​.​resources​[​i​].​offset​,​ pe​.​resources​[​i​].​length​)​ ​== 
"e15187f79b6916cb6763d29d215623c1"​)​ ​or 
(​hash​.​md5​(​pe​.​resources​[​i​].​offset​,​ pe​.​resources​[​i​].​length​)​ ​== 
"923963bb24f2e2ceac9f9759071dba88"​)​ ​or 
(​hash​.​md5​(​pe​.​resources​[​i​].​offset​,​ pe​.​resources​[​i​].​length​)​ ​== 
"9a2766aba7f2a56ef1ab24cf171ee0ed"​)​ ​or 
(​hash​.​md5​(​pe​.​resources​[​i​].​offset​,​ pe​.​resources​[​i​].​length​)​ ​== 
"ebe15bfb5a3944ea4952ddf0f73aa6e8")​) 

} 

 


